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Some methods of formation of preforms for drawing of polarization-maintaining 
optical fibres are based on utilization of the surface tension of glass in the liquid state. 
Under the action of surface tension non-circular glass articles begin to flow, which 
results in formation of an anisotropic internal structure of the preforms. The 
hydrodynamic analysis of two such methods is given in the paper. Analytical solutions 
of the Stokes equations with linearized boundary conditions for the corresponding 
creeping surface-tension-driven flows of liquid glass are obtained. By means of these 
solutions a processing strategy may be predetermined with a view to a specific internal 
structure of the fibre, as well as to the required value of birefringence. The theoretical 
results are compared with experimental data and agreement is fairly good. 

1. Introduction 
The polishing method used for creation of preforms for drawing of polarization- 

maintaining optical fibres is based on the following principles (Kaminow et al. 1979). 
The initial cross-section of a glass preform is shown in figure 1, where the domain 0 
corresponds to the core through which a signal propagates, domain 1 to the cladding 
which serves to impose stresses on the core, and domain 2 to the outer matrix of the 
preform (as well as the fibre which will be drawn from it). 

The material (glass) of the core differs in composition and in physical properties 
from those of the cladding and outer matrix. In its turn, the material (glass) of the 
cladding differs from that of the outer matrix. 

A part of the outer matrix is removed (polished) - as shown by the dashed lines in 
figure 1, for example - and the preform is placed in a furnace and heated until the 
cladding and outer matrix soften. The core remains hard. Surface tension at the 
boundary 4 begins to round it off. The resulting flow of molten glass deforms the 
boundary 4 subjected to the interfacial tension which is lower than the surface tension 
at the boundary 4. Deformation of the boundary 4 causes it to lose its circular form. 
Meanwhile, the boundary 4 remains unchanged since the core continues to be hard. 
Note that the case of a negligibly small core (effectively, a two-layer preform) i's also 
of interest. 

Cooling and solidifying of the preform at some intermediate moment of time yields 
a hard preform with a non-circular cladding boundary 4, whereas the outer boundary 
&. is already practically circular (the boundary 4 is always circular). It is emphasized 
that duration of the heat treatment should not be very long, since in the end the 
boundary < will also begin to approach a circle if the interfacial tension is non-zero. 

Owing to the difference in the thermoelastic properties of the materials in the 
cladding and outer matrix, an anisotropic field of elastic stresses is created in the hard 
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FIGURE 1. Initial configuration in the cross-section of the preform. 0 is the core, where a signal 
propagates; 1 is the stress cladding; 2 is the outer matrix. 4 is the boundary between the core and 
cladding; 4 is the boundary between the cladding and outer matrix; & is the outer boundary of the 
cross-section. 

preform cross-section (as well as in the optical fibre drawn from it) which results in 
birefringence. Accordingly, the core becomes capable of transmitting signals with a 
certain polarization. 

Although the above-mentioned method is used extensively, there is no quantitative 
theory that permits one to predict what shape the cladding will have for a given initial 
shape of the outer surface of the matrix and material parameters of the preform. A 
solution of this problem for three- and two-layer preforms is one of the main objectives 
of the present paper. We also address the inverse problem - prediction of the polished 
shape of the outer matrix needed in order to arrive at the prescribed shape of the 
cladding. 

The second method of preform creation employs a modified chemical vapour 
deposition process (MCVD; Kaminow 1981) or a non-symmetric one (N-MCVD; 
Doupovec & Yarin 199 1). In these techniques glass particles are thermophoretically 
deposited from a gas flow onto the inner surface of a glass substrate tube, creating a 
coating. Afterwards the tube is heated, softens and begins to collapse. The latter means 
that creeping flow of highly viscous liquid (glass) directed towards the centre arises 
under the action of surface tension, which tends to reduce the free surface area, filling 
up the cavity with the material. Thus, the slow viscous flow of the glass is driven by 
surface tension and (perhaps) a pressure differential between the inner and outer tube 
surfaces (Geyling, Walker & Csentits 1983). 

The aim of the present work is to describe analytically the collapse of the substrate 
tube with radially non-symmetric layers inside. The simplest model system with a 
single-layer coating shown in figure 2 is considered. Note that previous publications on 
the collapse of viscous tubes treated only the axisymmetric case (Lewis 1977, where the 
interfacial tension was taken to be zero and pressure difference was accounted for; Das 
& Gandhi 1986, where the interfacial tension was also taken to be zero and 
viscosity/temperature dependence was accounted for). 

With the system shown in figure 2 collapsed, solidification results in a two-layer non- 
symmetric preform (the case of a negligibly small core), which possesses birefringence 
and polarization-maintaining properties for the same reasons as in the polishing 
method - owing to the difference in the thermoelastic properties of the materials. 

The plan of the paper is as follows. In 92 we quote some typical numbers for 
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FIGURE 2. Single-layer coating in the tube collapse process. Layers 1 and 2 represent deposited 
domain and substrate tube material domain, respectively. Boundaries q, 4 and 4 denote the inner, 
the median and the outer interfaces, respectively. 

dimensions and properties of the preforms and timescales of the polishing method, and 
prove that the quasi-steady isothermal creeping flow is a valid approximation. Then 
also in $2 we obtain the linearized analytical solution for the flow arising in the 
polishing method in the general case of a three-layer preform. In 93 we obtain the 
linearized analytical solution for the surface-tension-driven collapse of non-symmetric 
composite tubes. The calculation results obtained for polishing of two- and three-layer 
preforms are presented in $4.1 where comparison with experimental data and a 
discussion are given. The results obtained for the collapse method are shown and 
discussed in $4.2. In conclusion, in 95 we summarize the results. 

2. Creeping flow in the polishing method 
In the polishing method a preform is heated in a furnace by a convective 

medium at distant temperature T,. A reasonable value of the heat transfer 
coefficient h = 1.5 x 10' W m-2 OC-l (Paek & Runk 1978). Taking the radius of the 
unpolished outer matrix R, = 0.6 x lo-' m and thermal conductivity of glass 
k = 0.3 x 10' W m-l OC-l (Paek & Runk 1978), we obtain the reciprocal Biot number 
Bi-' = k/(hR,) = 33.3. A relationship of the temperature at any radius in a cylinder 
and the temperature on the centreline can be found from the known solution for 
conductive heat transfer or its graphic representation in the form of the Heisler chart 
(e.g. figure 4.1 1 in Bejan 1993). As a result, the temperature field in the cylinder is 
nearly homogeneous for Bi-' = 33.3 during all the heating process, as is usually 
supposed for preforms and optical fibres (e.g. see Paek & Runk 1978). 

However, the temperature of the cylinder changes with time. For Bi-l = 33.3 it takes 
approximately time to = 40Ri/a,  (a, is the thermal diffusivity) to heat the cylinder to 
the temperature T,. Taking a glass density p = 2.2 x lo3 kg mP3 and specific heat 
c, = 1.05 x lo3 J kg-' OC-', as well as the above-mentioned value of k (Paek & Runk 
1978), we obtain a, = 0.13 x m2 s-l and to = 11 1 s. 

All the above estimates also hold for a polished preform. 
The viscosity of glass fits the Arrhenius-type equation, ,U = pi0 exp ( Ui/R,  T )  over 

wide ranges of temperature (pie and Ui are the pre-exponential factor and the viscous 
flow activation energy of a glass, respectively; R, is the gas constant; T is the absolute 
temperature (Doremus 1973)). Molten glass is a highly viscous Newtonian liquid. If we 
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take the temperature T, corresponding to the working point of a glass T, (at which the 
viscosity is lo3 kg m-l s-l ), then isothermal flow (with T =  T,) resulting from 
the action of surface tension begins when to z 11 1 s. The flow is negligible until the 
viscosity sharply decreases when temperature reaches T z T, (Doremus 1973). The 
value of the temperature T, corresponding to the working point T, (at which viscosity 
equals lo3 kg m-l s-l), typically ranges from 1800 to 2000 "C (Paek & Runk 1978; Oh 
1979). 

We can also take T, higher than that corresponding to the working point T,. Then 
temperature will continue to increase after flow has begun. However, temperature 
remains homogeneous over a cross-section of the preform. The viscosities of the glasses 
forming the cladding and outer matrix will change during such an overheat. If, 
however, the viscous flow activation energies are identical in the cladding and outer 
matrix (which is a realistic assumption for several pairs of glasses), U ,  = U,, then 
according to the Arrhenius law given above, the viscosity ratio ,ul/,u, is temperature 
independent and thus, time independent - an important fact which is used below to 
generalize the solution obtained in the case of the polishing method with an overheat. 
(The subscripts 1 and 2 denote the activation energies and viscosities of the cladding 
and the outer matrix, respectively.) 

It is emphasized that even in the worst case of U ,  + U, in an overheated preform, 
the situation may be considered approximately as an isothennal one, since the 
characteristic time of the temperature field saturation T~ = R;/aT is small compared 
with the characteristic time of flow development, 72 = ,uR,/a, (a, is the surface 
tension). Indeed, for R, = 0.6 x lo-' m, aT = 0.13 x m2 s-', ,u - lo3 kg m-' s-' 
and 01, = 0.3 kg s-' (Paek & Runk 1978), we obtain 7J7, = R,a,/(cr,p) = 0.138. 

Let us now estimate the Reynolds number characteristic of the polishing method. To 
this end we will prove that the flow is viscosity dominated. In the given surface-tension- 
driven flow the characteristic velocity is of the order of 01,/p. Therefore, the Reynolds 
number Re = pa, R,/,u2 (which is also the reciprocal Ohnesorge number). To estimate 
the value of Re we take, as above, p = 2.2 x lo3 kg m-3, R, = 0.6 x lo-' m, 
,u = lo3 kg m-' s-l corresponding to the working point, and a, = 0.3 kg sc2. As a result 
we obtain Re = 3.96 x lop6. This Reynolds number is much less than unity and will 
remain much less than unity even when the preform is overheated (to prevent the onset 
of instabilities). The Reynolds number estimates the ratio of the inertial forces to the 
viscous ones. In the given problem additionally the ratio of the inertial term with time 
derivative in the Navier-Stokes equation to the viscous terms is also of the order of Re, 
since the characteristic time of the flow is pR,/a,. Thus the viscous forces dominate all 
the inertial ones and the flow can be considered to be quasi-steady creeping flow (with 
boundary conditions which obviously are functions of time). 

The creeping flow under consideration is planar, and its solution does not depend on 
the axial coordinate z.  In polar coordinates r and cp (figure l), we obtain the Stokes 
equations (Happel & Brenner 1965) in each of the domains 1 and 2 in the form 

a av 
ar i% 
-(rv,) +d = 0, 0, = 0, 

(2.1 a) 

(2.1 b) 

(2.1 c, d )  
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where p is the pressure, v,, v, and v, are the components of the velocity vector, and ,u 
is the viscosity (different, in the general case, in regions 1 and 2). We, first, proceed with 
the case of steady homogeneous temperature. 

The solution of (2.1) must satisfy the no-slip condition at the boundary of the core 
4, as well as the kinematic and dynamic conditions at the boundaries 4 and 
presented in the form 

ri = ri(cp) = Ri+cT = Ri[l+ci(v,t)], i =  1,2, (2.2) 
where R, and R, are the initial outer radii of the cladding and the unpolished outer 
matrix, respectively. 

The above-mentioned no-slip, kinematic and dynamic conditions take the form 

&: vrl = 0, vvl = 0 at r = R,,; (2.3a, b) 

at r = rl = R, + c:; (2.3 c-g) 

cnn2 = - qa2, gnr2 = 0 at r = r, = R,  + C:. (2.3 h-j) ac,* up2 a c 2  r,: u,, = -+ 
at I+<, ~ 9 '  

Here and hereinafter the subscripts 1 and 2 denote quantities relating to the cladding 
and outer matrix, respectively. The capillary pressures qal and qaz at the boundaries 4 
and r,, in accordance with the Laplace equation, are equal to the products of the 
interfacial (or surface) tension and the sum of principal curvatures of the corresponding 
boundary surface. The stresses in the liquid material are denoted by grin and gnT, the 
subscript n referring to the normal to the boundary and T to the tangent. 

Introducing the stream function $ (u, = r-l a$,/av, u, = -a$/&), we reduce (2.1 a, b) 
to the biharmonic equation for $ 

where A is the two-dimensional Laplace operator. 
The general solution is sought in the form of a Fourier series 

m 

$ = ~fn(r)(A,*sinng,+B,*cosn~)+f, ,(r)(l  +Sq)+Mg, 
n=l  + rv(Ql sinp,+ Q, cos 4) +const, (2.5) 

where A,*, B,*, S,  M ,  Q,  and Q, are functions of time. 
Substituting (2.5) in (2.4), we arrive at the equation 

r 4 c  + 2r3K - rY:( 1 + 22) + rfk(2n2 + 1) +fn(n4 - 412') = 0, (2.6) 
where the primes denote the derivatives with respect to r.  

Equation (2.6) is the Euler equation with a general solution in the form 

f , (r)  = N ,  + N ,  In r + N3 r2 + N4 r21n r,  

f , (r)  = CF1 r3 + C,*, r + C,*, r- l+ C,*, r In r,  

f n ( r )  = Cln r ni-2 + C,*, rn + C,*, rPn + C,*, r-n+2, n 2 2, 

(2.7~) 
(2.7b) 
(2.7 c)  

where C,*,-C,*, and Nl-N4 are arbitrary constants. 
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By (2.5) and (2.7) we arrive, after some obvious renotation, at the following 
expressions for the stream functions in the domains 1 and 2 :  

m 

~, = C (rn+' + C,,, rn + C,,, r-, + C,,, P+,) [A,(t)  sinnp- B,(t) cos np] 
n=2 

+ (r3 + C,,, r +  C,,, r-l + C,,, r In r ) [A , ( t )  sinp- B,(t) cosg,] 

+ N , ,  + N , ,  In r +  N,, r2+N, ,  r2 lnr 

+ M,p+ (Lll In r + L,, r2 + L,, r2 In r)p + Q,, rp sinv + Q,, rpcosg,, ( 2 . 8 ~ )  

m 

$, = C (r"+2+CZn2rn+C3n2r-n+C4n2r-n+2)[Dn(t)sinnp-~,(t)cosnp] 
n=2 

+ (r3 + C,,, r + C,,, r - l+  C,,, rln r ) [Dl( t )  sing,- E,(t) cosp] 

+ N, ,  + N,, In r + N,, r2 + N,, r2 In r 

+ M,p+ (L,, In r + L,, r2 + L,, r2 In r )  p + Q,, rg, sinp+ Q,, rycosp. (2.8 b) 

Here we have emphasized the dependence of the coefficients of the Fourier series A,, 

Since the stream function is defined up to an arbitrary constant, we can take in (2.8) 

By using (2.8) we arrive at the following expressions for the velocity components: 

B,, D, and En on the time parameter t in the boundary conditions (2.3). 

N, ,  = N , ,  = 0. 

m 

v,, = C (rnfl + C,,, rn-l + C,,, rPn-l + C,,, rPn+l)  n(A, cos np+ B, sin np) 
n=z 

+ ( r 2 +  C,,,+C,,,r-2+C4111nr)(A1~osp+B,sing,) 

+-+-ln Ml L,, r + L,, r + L,, r In r + Qll(sinp+pcosg,) + Q,,(cosg,-g, sinp), 
r r  

( 2 . 9 ~ )  
m 

vpl = - C [(n + 2)  rn+l + nCznl rn-' - nC,,, r-,-l + (- n + 2)  C,,, rPn+l] 

x (A ,  sin np- B, cos ng,) - (3r2 + C,,, - C,,, r-,  + C,,, In r+  C,,,) 

n=2 

x ( A ,  sing,- B, cosp) - 2N3, r + 2N4, r In r +  N4, r 

- (+ + 2L,, r + 2L,, r In r + L,, r p- Q,, p sing,- Q,, g, cos p, (2.9 b) 

00 

v,, = C (rn+l+ C,,, rn-l + C,,, r-,-l + C,,, r P n f 1 )  n(D, cos ng,+ En sin np) 
n=2 

+(r2+C212+C312~-2+C4121nr)(D,cosg,+ E,sinp) 

+%+%In r + L,, r + L,, r In r + Q,,(s.inT +g, cos g,) + Q2,(cos g, -g, sin g,), 
r r  

(2.9 c )  
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vp2 = - C [(n + 2) rn+l + nC2,, rn-l - nC,,, rPn-l + (- n + 2) C,,, rPn+l] 
n=2 
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x (D, sin ng,- E, cos ng,) - (3r2 + C,,, - C,,, r-' + C,,, In r + C,,,) 

x (D, sing,- El cosg,) - -+ 2N3' r + 2N4, r In r + N4, r 

- (+ + 2L,, r + 2L3, r In r + L,, r cp- Q,, g, sing,- Q,, g,cos g,. 

1 (7, 
(2.9d) 

Here and hereinafter, dependence of A,, B,, D, and En on t is understood. 
In order to satisfy the condition of periodicity of the velocity field with respect to g,, 

the coefficients Q,, = Q,i = L,, = L,, = L,, = 0 (i = 1,2), as can be seen from (2.9b) 
and (2.9d). All axisymmetric terms with the coefficients Nij in (2.9b) and (2.9d) 
correspond to rotations of a whole material layer (a ring) in the preform (including, in 
particular, a quasi-rigid rotation of the preform as a whole). Such an axisymmetric 
motion cannot arise under the action of non-axisymmetric polishing, and thus 
N,i = N,, = 0 ( i  = 1,2). (The latter evidently follows if one proceeds with the problem 
including NZi and N,, and then satisfies the boundary conditions at the interfaces.) An 
imposed rigid-body rotation of the preform as a whole in the inertialess situation 
cannot affect the shape of the boundaries. Therefore, without loss of generality, we can 
assume that N,, = 0 (i = 1,2). 

The sink-like term M , / r  in (2.9a) should disappear since the rigid core does not 
allow such a component to exist in the domain of cladding (in the two-layer preform 
this term should also disappear since velocity v,, should be finite at r = 0). Thus, 
M ,  = 0 and, via the interfacial conditions, M ,  = 0 in ( 2 . 9 ~ ) .  

Substituting (2.9) in (2.1 a, b), we find the pressure 

p1 = p1 [ w  C [rn(4n + 4)  + C,,, P ( 4 n  - 4)] ( A ,  cos ng, + B, sin ng,) 

+ (8r  - *) ( A  , cos g, + B, sin g,) I + K,, (2.10 a) 

p z  = p, r [rn(4n + 4)  + C,,, r-"(4n -4)] (D,  cos ng, + En sin ng,) 

+ (8r  - %) (Dl cos g, + El sin g,) I + K,, (2.10 b) 

where p1 and p, are the viscosities in the domains of the cladding and the outer matrix, 
respectively; K, and K, are constants. 

By means of (2.9) and (2.10) we arrive at the following expressions for the stresses: 

o - ~ ,  = -p + 2p av,/ar, o - , ~  = p(r-l av,& + av,/ar - vp/r) : 

cry, = p1 
00 

[rn( - 2n - 4 + 2n2) + C,,, rn-2(2n2 - 2n) 
n=z 

+ C3,l r-,-'( - 2n2 - 2n) + C,,, r-,( - 2n + 4 - 2n2)] ( A ,  cos ng, + B,  sin ng,) 

+pl( -4r+ 4C4,,/r-4C,,, r-,)(A1 cosy+ B, sin g,) - K,, (2.11a) 
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co 

grql = p, { c [rn( - 2n2 - 2n) + c,,, rn-z(  - 2n2 + 2n) 
n=z 

+ C,,, r-,-,( - 2n2 - 2n) + C4,, rPn( - 2n2 + 2n)l 

x ( A ,  sin ng;- B, cos ncp) - (4r+4C3,, F3) (A1  sincp- B, coscp) } . (2.11b) 

The expressions for v,,, and grq2 are analogous to (2.11 a) and (2.1 1 b) with grr2, crrv2, 
p,, D, and En instead of rrrl, rrql, p,, A ,  and B,, respectively. 

We linearize the problem, assuming Ct 4 1 and neglecting small terms of higher 
order. Then the boundary conditions (2.3) and the expressions for capillary pressure 
reduce to the form 

4: or, = 0, uql = 0 at r = Ro;  (2.12~2, b) 

a<,* 4 = at, = ur.29 uql = up22 c r r l  = r r r z - q a l ,  q r q l  = q r v z  at r = R,; 

(2.1 2 c-g) 

(2.1 2 h-J) a[,* 
a t  

&: u,, = --, rrrz = -qaz, vrv2 = 0 at r = R,; 

(2.12k) 

where a, and a, are the interfacial tension at the boundary 4 and the surface tension 
at the boundary &, respectively. 

We represent the perturbations of the boundaries in the form of Fourier series 

(2.13 a) bo,(t) 51 = T+ C [anl(t)sinncp+bnl(t)~~sncpI, 
n=l 

co 

6, = y+ C [an,(t)sinncp+bnz(~)cosncp], (2.13b) 
n = l  

and thus, via (2.9), (2.1 l t (2 .13)  we obtain for n = 07 

b01 = bolo, boz = bozo (2.14a, b) 

(here and hereinafter the additional subscript 0 stands for t = 0);  for n = 1 

bll = bllO9 bl, = bIZ0~ (2.15 a, b) 

whereas for n 2 2 we arrive at the system of two differential equations for determining 
the coefficients b,, and bn2: 

(2.1 6 a) 

(2.1 6 b) 

Here we adopt the notation given in Appendix A. 

t The related derivations can be obtained on request from the author or from the Journal of Fluid 
Mechanics editorial office. 
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Solving the system (2.16) and introducing the notation 

(2.17 a-d) 
for n 3 2, when a1 + 0 (and hence l,, =I= 0), we obtain 

P+(m+ - l,,) P-(m- - lZl) 
bn1 = exp (m’t) + exp (m-0, (2.1 8 a)  

122  4 2  

b,, = P+ exp (m’t) + P- exp (m-t), (2.1 8 b) 

(2.18~) 

The constants P+ and P- are determined by the initial perturbations of the 
boundaries cl and c2 (at t = 0). Their Fourier coefficients, denoted as in (2.14) and 
(2.15) by the additional subscript 0, are known. Thus, we arrive at 

In the particular case, a, = 0 (lZ2 = 0) the coefficients b,, are calculated as before, 
using (2.18b) and (2.19), whereas b,, is found from the expression 

(2.20) 

The expressions for coefficients a,, and a,, will be (2.14), (2.15), and (2.18)-(2.20) 
with b,, and b,, replaced with a,, and an,, respectively. 

In the case yo = R o / R ,  = 0 the solution obtained for a three-layer preform reduces 
to that of a two-layer one. In the latter there are only the cladding and outer matrix, 
whereas the core is negligibly small. 

Naturally, in the case yo = 0, ,ul = ,uz and a1 = 0 the solutions for a three- and a two- 
layer preform reduce to that of a single-layer preform 

bo, = bO20, a12 = a1203 4 2  = b120, (2.21 a-c) 

4 1 

12 1 
b,, = b n , ~ + b n , ~ - [ ~ x p ( ~ 2 1 t ) - l ] ,  n 2. 

n 3 2, a,, = anz0 exp ( - ~  azn  t ) ,  b,, = b,,, exp 
2P2 R2 

This solution is of interest in such applications as formation of non-circular textile 
fibres (Ziabicki 1976). 

In addition, we generalize the solution (2.18)-(2.20) obtained above to the case of a 
two-layer preform drawn uniaxially and uniformly into a fibre with simultaneous 
structural changes in the cross-section taking place. We assume that along the fibre 
axis z there exists a velocity v, such that av,/az = D,,(t), av,/ar = avZ/i3p = 0 and 
av,/az = av,/az = 0. Formally we consider the case of a slow uniform stretching, for 
example by two clamps moving in opposite directions when v,, up and an area of the 
preform cross-section are independent of z ,  whereas v, is constant over the cross- 
section. In fibre drawing by a receiving bobbin from a heated preform, all the above 
assumptions are applicable only when variation of the parameters along a spinline is 
gradual, which is the case under certain conditions (Yarin 1993). 

The projections of the momentum equations (2.1 a)  and (2.1 b) accordingly remain 
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unchanged. The projection of the momentum equation on the z-axis in the given case 
takes the form ap/az = 0, whereas the continuity equation is the following: 

(2.22) 

Clearly, all equations and boundary conditions are satisfied if to the velocities vrl and 
v,, used above we add terms (- rDZ2/2), leaving up, and up, unchanged. In the given 
case 

The basic set of differential equations to which the problem reduces retains the form 
(2.16), as time differentiation is present only for conditions (2.12c, h), which lead to the 
two first terms with the time derivatives on the left in (2.16~1, b); the coefficients k, in 
(2.16) can in principle be time dependent. It is only necessary to account for the fact 
that now, via (2.23), y = R,/Rl = R,,/R,,, which means that y is time independent in 
spite of the fact that R, and R, are functions of time. The ratios al/az and p1/p2 are 
constant, whereas yo = 0. From (A 1) of Appendix A we see that among all the 
coefficients S1-S,,, only S,, S,, S,, and S,, are time dependent, since they are 
proportional to the factor a,/(p, RJ. Therefore, via (A 2) we see that among all the 
coefficients k,-k, only k,, k,, k ,  and k ,  are time dependent and all of them are 
proportional to the factor 

Thus if we replace t in (2.16) by a new time 

t ,  = exp [k 1 D,,(t”) dr”] dt’, (2.24) 

then equations (2.16) retain their previous form (with t ,  instead of t), whereas the 
coefficients k,, k,, k ,  and k,  take a new time-independent form given by (A 1 h, i, n, q) 
with R,, instead of R,, and (A 2c, d, g ,  h). 

In the case in question the coefficients of the Fourier series depend exponentially not 
on t but on t,. Thus, the solution of the problem is now given by (2.14), (2.15), 
(2.17)-(2.20), (A 1) and (A 2) with t replaced with t,, with y = R,,/R,, and with R,, 
instead of R, in (A 1 h, i, n, q). Consequently, the dimensions of non-symmetrical 
cladding in an undrawn preform, divided say by R = R,,, are the same as those of the 
cladding in the fibre drawn from it, divided by R,. Only the time taken to reach such 
a shape will vary. 

The same conclusion applies to the case of viscosity variation with time. Indeed, at 
the beginning of the present section it was shown that the preform is practically 
uniformly heated over the cross-section (this is also applicable to the case of a spinline 
or a fibre drawn from it). In the case of an overheat and equal activation energies, 
U, = U,, this leads to a time-independent ratio pl/p2 = plo/pz0, whereas variation of 
al/a2 is negligible and yo = 0. Under these conditions the coefficients k,, k,, k,  and k,  
are proportional to a2 / (pzR2)  = [a,/(p.,, R2)]exp [- U,/R, T(t)]. Then, replacing t in 
(2.16) by a new time 

t ,  = [ exp [ - U,/R, T(t”)] dt“ (2.25) 
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we preserve the form of equations (2.16) (with t ,  instead oft), whereas the coefficients 
k,, k,, k,  and k, take a new time-independent form given by (A 1 h, i, n, q) with pz0 
instead of p,, and (A 2c ,  d ,  g ,  h). 

3. Surface-tension-driven collapse of non-symmetric composite tubes 
In this section we analyse the surface-tension-driven collapse of a tube with a coating 

inside (see figure 2). All the estimates given at the beginning of the previous section 
hold in the present case, and thus the process is considered as planar and quasi-steady 
creeping flow. It is supposed that there is a vacuum both inside and outside the tube, 
or that there is a gas which can leak out from the tube through the open ends and its 
dynamic effect is negligible. 

The problem concerns the fact that the inner surface of the deposited coating may 
differ from a circle, as a result of which the other two interfaces may be rather severely 
changed. In turn, as a result, the collapsed coating may for some time not be a circle. 

The flow is described by the biharmonic equation (2.4) for the stream function in 
each domain, 1 or 2. Its general solution is given by (2.8) where the additional 
subscripts 1 and 2 refer to the domain of the coating and tube material, respectively. 

By the same reasoning as in 92 Qli = Q2i = LIi = L2i = L,i = Nli = N,, = N3i = 
N4i = O , ( i  = l ,2)  and from (2.8) we get 

$, = C (rn+' + C,,, r" + C,,, r-" + C,,, r T n f 2 )  ( A ,  sin np,- B, cos ng,) 
m 

n=2 

+ (r3+ C,,, r + C,,, r - l+  C,,, r lnr)(A, sing,- B, cosg,)+M,g,, (3.1 a) 
m 

k2 = (rn+2+C2n2rn+C3n2r-n+C4n2r-n+2)(Dnsinnp,-Encosng,) 
n=2 

+ (r3+ C,,, r +  C,,, r - l+  C,,, rlnr)(D, siny-El cosy) +M2y. (3.1 b) 

The following velocity components correspond to the solution (3.1) : 

m 

vrl = C (rn+l+ C2,, rn-l + C,,, rPn-l + C,,, rPn+l) n(A, cos ng, + B, sin ng,) 
n=2 

+ (r2 + C,,, + C,,, r-, + C,,, In r ) (A1  cosg,+ B, sing,) + MJr ,  (3.2~1) 
m 

vvl = - C [(n + 2) rn+l + nCzn, rn-l - nC,,, rPn-l + (- n + 2) C,,, 
n=2 

x (A,sinng,- B,cosng,)-[3r2+C211-C311r-2+C,,,(lnr+ l)](A,sing,-B1cos~), 
(3.2b) 

m 

vT2 = ( rn+l+  C,,, rn-l + Can2 rPn- l+  C,,, rPn+l)  n(D, cos np, + En sin ng,) 
n=2 

+(r2+C212+C312r-2+C4121nr)(D1cosg,+E,sinp,)+M,/r, ( 3 . 2 ~ )  
m 

vv2 = - C [(n + 2) rn+l + nC2,, rn-l - nC3n2 rPn-' + ( - n  + 2) C4n2 r-n+l] 
n=z 

x (D,sinng,-E,cosng,)-[3r2+C212-C312r-2+C,,2(lnr+ l)](D,sing,- E,cosp). 
(3.2d) 
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Note that in the given case there are no restrictions on the sink-like components 
Mi/r ( i  = 1,2) in (3.2a) and (3.2c), since we consider a hollow preform. Thus these 
terms survive here in contrast to the case considered in $2. 

Calculating the pressure from the Stokes equations by using (2.1 a, b) and (3.2) and 
then the stress components grr and grV in each of the domains, we arrive at 

grrl = p1 C [rn( - 2n - 4 + 2n2) + C,,, F 2 ( 2 n 2  - 2n) + C3,, r-,-,( - 2n2 - 2n) 
m 

n=2 

+ C,,, rPn( - 2n + 4 - 2n2)] ( A ,  cos ng, + B, sin ng,) 

+p1(-4r+4C4,,r-'-4C3,, r-3)(A1cosg,+ B,sing,)-K,~-2plM1 r-', (3.3a) 
m 

v,,, = p, C [rn( - 2n - 4 + 2n2) + C,,, rn-2(2nz - 2n) + C3,, r-,-'( - 2n2 - 2n) 
n=2 

+ C,,, r-,( - 2n + 4 - 2 4 1  (D, cos ng, + En sin ng,) 

+p2(-4r+4C4,,r-'-4C3,, r - 3 ) ( D 1 ~ ~ ~ g , + E l  sing,)-Kz,-2p, M2r-2 ,  (3.3b) 
m 

grVl = p1 C [ - 2rn(nz + n )  + 2C2,, F2( - n2 + n)  + 2C3,, r-,-'( - n2 - n)  
n=2 

+2C,,,r-n(n-n2)](A, sinng,-B,cosn~) 

+p1(-4r-4C3,, F3)(Al  sing,- B,cosg,), (3.34 
m 

grp2 = p, C [ - 2rn(nz + n )  + 2C,,, rn-,( - n2 + n) + 2C3,, rPnp2( - n2 - n)  
n=2 

+ 2C,,, r-,(n - n')] ( D ,  sin ng, - En cos ng,) 

+ pz( - 4r - 4C3,, r-3) (D, sing,- El cos g,). (3.3d) 

Here K,, and K,, are constants, and p1 and p, are the viscosities of the liquid glass 
in the domains of the coating and tube material, respectively. 

The perturbations of the radii of the interfaces 4, < and 4 (see figure 2) are given 
by the expression 

(3.4) 
where ri is the modulus of the radius vector of the perturbed interface, Ri(t) the radius 
vector of the unperturbed interface (the circle), and t time (cf. (2.2)). 

The kinematic boundary condition at all interfaces has the form 

ri = Ri(t) [ 1 + &(g,, t)], i = 0, 1,2, 

(cf. (2.12c,h)). 
Here and hereinafter, the boundary perturbations are assumed small, and the 

boundary conditions are linearized. 
Further, we have the conditions 

u,, = ur2, up, = up, at r = r1 = R,(1 + c,) 
(cf. (2.12d, e)). 

The dynamical boundary conditions are as follows : 

(3.6a, b) 
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where qai are the capillary pressures defined by the linearized Laplace formula (cf. 
(2.12.L g ,  kA). 

Consider, first, the unperturbed part of (3.2)-(3.7). After calculation of the constants 
M,,  M,,  K,, and Kzo, we obtain the equations describing the evolution of the radii of 
the unperturbed interfaces (circles) during the collapse of a tube with a coating inside : 

dR, y: dR dR2 1 
d t  R, d t  R, df R,  

= -F, - - - -F, 2 = %F, __ 

( F  is always negative). 
Here the following non-dimensional variables are introduced : 

go = ao/a2, 011 = %/a,, p ,  =p,Ip,, 

Y* = R,O/Rl,, Y1 = R,o/R,o, 
R, = R,/Roo, R ,  = RJR,,, R,  = R,/R,,, t = ta,/p2 R2,. 

(3.8 a-c) 

(3.8d) 

(3.9~-c) 

(3.9d, e )  

(3.9 f-i) 

The surface-tension coefficients at the interfaces 4 are denoted ai, and the initial 
values (at t = 0) of the radii of the unperturbed interfaces (circles) Ri are denoted Ri,. 

In the particular case Z, = 1, ccl = 0, p, = 1 (the single-phase tube), (3.8) have an 
analytical solution, as follows : 

(3.10a, b) 

(3.11) 

In another particular case when E, = 1 ,  b, = 0, and pl is arbitrary, equation (3 .8~)  

For all three interfaces, we consider perturbations in the form of the Fourier series 

(3.12) 

By using (3.2), (3.3) and (3.12) we satisfy the boundary conditions (3.5)-(3.7) and 
arrive at the following results.? For the n = 0 mode of the interfaces we obtain the 
following differential equations : 

which shows that the tube will collapse completely after a time 

t* = - 2( 1 - y;’) + 2( 1 - y ; y .  

is identical with (6) of Lewis (1977) with the pressure differential equal to zero. 

(cf. (2.13)) : 

Ci = -+ boi(t) C [a,,(t)sinnp,+b,,(t)cosnp], i = 0, 1,2. 
2 n=1 

db,, - 2 dR, y 2  db,, - 2 dR, 1 Y 2  db01 - b,,+.2F -_-_-- 2 dR, b O , + 2 F  - _ - _ -  R, df b02+-F 
- _ - _ -  
d t  R, d t  Ri ” d t  R, d t  R; ” d t  Ri ’’ 

(3.13~-C) 
- 

1 1 aO y1 I 4~~ dRo) 
2PlY;R;2-F1Y1 0 boo(- R, d t  

I:--- 
2 R - 2  - y; R ; 2  + R ; Z  1 -  

- 

+( l -p l ) - - l  + b  dR2 . (3.13d) + b,, (y R, ‘R) d t  0 2 ( k  R, d i ) ]  

t The related derivations can be obtained on request from the author or from the Journal of Fluid 
Mechanics editorial office. 
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For n = 1, the following equations are obtained: 

b10 = @3 b113 

where the notation is as in Appendix B. 
For n 2 2 we find 

dbno - 1 - - -(<k1 k6+& k ,  k,+ F; k,  k lo-  F; k,  k g - &  k, ,  k ,  -& k ,  k,) ,  
df 4 

1 
df 4 
-- dbnl - -(F; k, k, ,  +& k ,  kL+& k; k,,-F, k ,  k i -  F; k,,  kL-4  k2 k,,), 

1 
df 4 db,, = -(& k ,  k , ,  + Fi ki k ,  +& k; k , -& k ,  k i - 5  ki k , -  F; k, ,  k5),  

where the notation is as in Appendix C .  
We emphasize that the equations describing the time evolution of the 

( 3 . 1 4 ~ )  

(3.14b) 

( 3 . 1 4 ~ )  

(3.1 5 a) 

(3.15b) 

(3.15 c)  

Fourier 
coefficients a,, may be obtained from (3.14), (3.15), (C 1) and (C 2) by replacing all the 
coefficients b,, with ani. 

during the collapse of a tube with 
a coating inside, we have to integrate numerically the set of ordinary differential 
equations (3.8), (3.13), (3.14) and (3.15) (for bni as well as for a,,). The Runge-Kutta 
method of fourth and fifth order with automatic step size control was used (Forsythe, 
Malcolm & Moler 1977). 

Hence, to describe the evolution of the interfaces 

4. Results, discussion and comparison with experimental data 
4.1. Method of polishing 

In the present section the results obtained above are applied to several particular 
examples. To calculate particular cases, one has to employ data on the material 
properties of molten glass, such as viscosity, surface and interfacial tension. 
Determination of surface and interfacial tension of molten glass involves experimental 
difficulties owing to the necessary high temperatures and high viscosity. The following 
facts are known from the literature (e.g. Morey 1938, 1954; Scholze 1991): the surface 
tension of molten glass is practically temperature independent (an increase of 100 K 
reduces surface tension by about 1-3 %); its variation due to the effect of added oxides 
(such as B20, ,  which is considered below) is typically small, of order of several percent; 
to the best of our knowledge, there is no direct measurements of interfacial tension 
between two molten glasses. Accordingly, one can virtually neglect surface-tension 
gradients in non-isothermal problems, and expect that interfacial tension is small 
compared with surface tension. 

The interfacial tension of molten glasses has been measured indirectly by 
Grigor'yants et al. (1989). The experiments were carried out with two-layer quartz 
optical fibres with borosilicate quartz glass in the cladding and pure quartz in the outer 
matrix. Fibres with non-circular cladding formed by the polishing method were 
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FIGURE 3. Two-layer preform formation - comparison with the experiment. The dashed curves 1 and 
2 show the configuration of the boundaries of the cladding and outer matrix at the initial time. The 
solid curve 3 shows the computed steady-state shape of the boundary of the cladding after rounding- 
off of softened preform under the action of surface tension. Curve 4 shows the final shape of the 
boundary of the cladding which was observed in the experiment, and curve 5 shows the circumference 
of the outer matrix of the preform after rounding-off both in the theory and experiment. 
Experimental data of Grigor’yants et al. (1989): .,/a2 = 0, pJpZ = 0.2, and y = 2.27. 

subjected to prolonged heating. No rounding-off of the boundary of the cladding was 
observed in this experiment, which shows that interfacial tension between borosilicate 
quartz glass and pure quartz is, indeed, approximately zero. For this reason the case 
aJaz = 0 is considered below as a basic one. The solutions obtained in 992 and 3 allow 
us, however, to treat the cases with aJaz + 0. The results of these calculations are also 
discussed. 

First, we consider two-layer preforms. This case corresponds to the solution given 
by (2.14), (2.15), (2.17)-(2.20), (A 1) and (A 2) with yo = 0. We compare theoretical 
results with the experimental data of Grigor’yants et al. (1989) corresponding to the 
case a,/a, = 0, ,uccl/,uz = 0.2, and y = 2.27. The comparison is presented in figure 3 and 
shows that the calculations agree fairly well with the experimental data. The 
satisfactory agreement of calculations with experimental data for large initial 
perturbations of the circular outer boundary of the preform, as shown in figure 3, 
shows that the analytical solution obtained is sufficiently accurate far beyond a linear 
approximation. Note also that the value aJa2 = 0 used in the calculation is in 
agreement with the experiment on prolonged heating of the preform discussed above. 

The results shown in figures 3-5 were obtained with 19 modes of the Fourier series. 
In figure 4 we present some additional characteristic calculation results for two-layer 

preforms. The corresponding values of the parameters are shown in table 1. 
It is emphasized that the analysis in the present work is based on the assumption that 

each interface is a small perturbation of a circle and most of the cases in figure 4 are, 
indeed, moderate perturbations of circles. The question of the range of applicability of 
the results obtained in 992 and 3 cannot be resolved within the framework of the 
linearized theory. There are two ways to check the range of applicability of the theory 
when perturbations seem not to be small. The first is to compare the results with 
experimental data. This is done in figure 3, where we use experimental data obtained 
under well-defined conditions (such data are scarce), and show that the analytical 
solution is sufficiently accurate even for relatively large perturbations. One cannot, 
however, exclude the possibility that the close agreement for one experiment may be 
fortuitous. Therefore, in principle, further comparison with experimental data is 
desirable. (One more example, but, only a qualitative one, will be given below for the 
case of collapse.) 
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f h )  2' 

FIGURE 4(u-h). For caption see facing page. 

The second way to check the range of applicability of the theory is to develop a fully 
numerical, large-deformation calculation (e.g. via finite-element methods) and compare 
its results both to experiment and to the linearized theory of the present work. 
However, to the best of our knowledge, such a numerical problem still awaits solution. 
Moreover, for large ellipticities of the cladding or outer matrix (the most doubtful case 
in the analytical solution) finite-element methods raise huge difficulties because of the 
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FIGURE 4. Calculated shapes of two-layer preforms for various initial cross-sections of the outer 
matrix. The dashed curves 1 and 2 show the configurations of the boundaries of the cladding and 
outer matrix at the initial moment, and the solid curves 1' and 2' show these boundaries at the end 
of the process at steady state. The parameters corresponding to a-k are given in table 1. 

Figure y PlIP2 Figure Y PlIPL2 

4 (4 2 1 4 ( f )  
4 (b) 2 0.2 4 (d 
4 (c) 2 2 4 (h)  2 0.2 

4 1 4 (4 2 0.2 
4 0.2 4 J )  2 2 

4 (4 
4 (el 

4 (k)  2 0.2 

2 1 
2 1 

TABLE 1. Values of the parameters corresponding to figures 4 ( a ) 4 ( k ) .  .,/a, = 0 

high aspect ratio of the elements which, in turn, affects the time step. Thus, one could 
be also suspicious of the accuracy of such a numerical solution for a cladding or outer 
matrix with large ellipticity. In any case, the present analytical solution yields a 
necessary test for any numerical method. 

Yarin (1 990) found the analytical solution of the thermoelastic problem cor- 
responding to a hard polarization-maintaining preform (or fibre) of the type which 
results from the polishing or collapse methods considered in the present work. He 
linearized the boundary conditions of the thermoelastic problem similarly to the 
present work. Bernat & Yarin (1992) compared this solution with the numerical large- 
deformation solution of the thermoelastic problem obtained by means of the finite- 
element method, and agreement was fairly good up to an ellipticity (semi-axes ratio) 
of 2 (they use the reciprocal value of 0.5). In the absence of a numerical large- 
deformation solution of the present problem, it is believed that an ellipticity of about 
2 represents the range of applicability of the present solution also, since its inaccuracy 
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is similar to that of Yarin (1990). This, in a sense, supports the data shown in figure 
4 and (together with the comparison with experiment discussed above) indicates that 
the present analytical solution can be sufficiently accurate far beyond a linear 
approximation. 

In figure 4 and table 1 it is seen that a fivefold and a tenfold increase in the ratio ,ul/,u2 
at fixed values of y and a1/a2 = 0 had only a very slight effect on the results. 

In the case of y = 4, the results (figures 4d and 4e) show that the final form of the 
cladding becomes similar to that of a bow-tie. In optoelectronic applications a bow-tie 
form of the cladding boundary is preferable because it provides higher birefringence. 

When the interfacial tension is negligible, al/a2 = 0, the cladding boundary 
asymptotically approaches a final non-circular form (shown in figures 3 and 4), 
whereas the outer boundary of the outer matrix tends asymptotically to a circle under 
the action of surface tension. 

We also performed the calculations with non-zero interfacial tension and values of 
y and ,ul/,u2 similar to those shown in table 1. 

For a,/., = 0.1, two characteristic timescales of the process can be distinguished. 
The first is of the order of the timescale based on the surface tension, ,u2 R,/a2.  In this 
timescale the flow development at aJa2 = 0.1 is almost identical with that for 
aJa, = 0. The most deformed shapes of the cladding boundaries are practically 
undistinguishable from those shown in figure 4, whereas the outer boundary of the 
outer matrix acquires a circular shape. Such an intermediate asymptotic form persists 
for rather a long time. However, in the timescale based on the interfacial tension, 
p2 R,/a,, which is ten times longer than ,u2 R,/a, in the given case, these intermediate 
asymptotic forms of the cladding disappear, since the cladding should return to the 
trivial equilibrium form with a circular boundary minimizing the interfacial energy. 
This, indeed, takes place, and the analytical solution obtained describes monotonic 
evolution of the cladding forms of figure 4 back to a circular shape, which the 
boundary of the cladding eventually assumes as time increases. During this process, the 
outer boundary of the outer matrix continues to be virtually circular. 

Several calculations have been done at relatively large interfacial tension, 
al/a2 = 0.5, and the values of y and ,ul/,u2 shown in table 1. At such a value of al/a2 
the intermediate quasi-steady asymptotic form of the cladding, described above, 
practically disappears (since the timescales ,u2 R,/a2 and ,u2 R2/al are close to each 
other), the deformation of the inner (cladding) boundary relative to a circle being only 
very slight throughout the process of rounding-off of the outer boundary. Therefore, 
such glasses with high interfacial tension are completely inappropriate for use in the 
polishing method. 

All the results above show the solutions of the direct problem when the initial 
configuration of the outer matrix obtained by polishing is given, in order to predict the 
final shape of the cladding boundary. The analytical solution obtained in $2, however, 
may also be used to answer the inverse problem : what should be the shape of the outer 
matrix after polishing, to arrive at a given shape of the cladding boundary? 

Bearing in mind that in optoelectronic applications a bow-tie shape of cladding is 
preferable, we predict the initial shape of the outer matrix in a two-layer system, which 
allows us to arrive at the final configuration of the cladding, for example, in the form 
of the ovals of Cassini 

(x"+2)2-2c2(x2-y2) = u4-c4. 

Here the Cartesian coordinates are those of figure 1 and the constants u and c satisfy 
the inequality c < u < c d2 (the only condition under which the ovals resemble a bow- 
tie). 
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The area of oval A is equal to the area of an equivalent unperturbed circle, which 
yields the radius of the latter: 

Knowing R, from (4.2a) we can represent the oval (4.1) as a perturbation of the 
circle of radius R, in the form of (2.2). As a result the perturbation of this circle is given 
by the expression 

x 1/2 1 
- [cos 29, + (cos2 293 +$ - 1)1’2]1/2 - 1, 

< 1 = [ m ]  p (4.3 a) 

/3 = a/c,  1 < ~3 < 1/2. (4.3 b, c)  

The expression for 6, is used to find the Fourier coefficients anlf and b,,, 
corresponding to the final boundary of the oval cladding: 

When the interfacial tension is zero, we have from (2.20) and the complementary 
expression for a,, the following: 

(4.5 a, b )  

Taking t = t,, where t ,  is the duration of the process, we arrive from (4.5) at the 
expressions for the Fourier coefficients of the initial shape of the outer boundary: 

(the initial cladding boundary is circular and thus anlo = bnlo = 0). 
Since I,, < 0, for a sufficiently large t ,  we obtain 

(4.7a, b)  

The Fourier coefficients corresponding to the polishing shape of the outer matrix, 
which in turn leads to the bow-tie shape of the cladding boundary, are thus given by 

The results for the inverse problem are shown in figure 5 corresponding to y = 2, 
,u1/,u2 = 0.2, al/a2 = 0 and /3 = 1.1. The prescribed value of p determines the required 
cladding shape. 

We realize clearly that the boundary shape 2 in figure 5 is a rather large perturbation 
of a circle. The ellipticity of this curve is, however, close to 2, which fits the borderline 
of the range of applicability of the linearized theory, as was discussed above. Therefore, 
we hope that the data in figure 5 are a valid approximation of a nonlinear solution, 
which should be checked in future by solving numerically the corresponding direct 
problem with 1 and 2 of figure 5 as the initial cladding and outer matrix forms. 

Note that such inverse problems are characteristic of engineering (Shercliff 198 1). 
Computers are practically useless in solving such problems. Therefore, even an 

(4.7). 
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1 2 ’  

FIGURE 5. Solution of the inverse problem. Predicted initial shape of the outer boundary (curve 2) 
leading to the final shape of the cladding boundary (curve 1’) in the form of the oval of Cassini with 
p = 1.1. The dashed curves 1 and 2 show the initial configurations of the boundaries, and the solid 
curves 1’ and 2‘ show the final ones. 

FIGURE 6. Three-layer preform. The dashed curves 1 and 2 show the shapes of the boundaries of the 
cladding and outer matrix at the initial moment. The solid curves 1’ and 2‘ show these boundaries 
at the end of the process in the steady state. Circle 3 shows the core boundary. yo = 0.2, y = 2, 
PI/& = 0.2, cr,/u2 = 0. 

Yo Ib21,l 
0.1 0.2823 
0.2 0.2776 
0.3 0.2683 
0.4 0.2523 
0.5 0.2260 

TABLE 2. The effect of the solid core size on the final shape 
of the cladding for three-layer preforms 

approximate analytical solution, like that of figure 5 ,  might be very instructive and 
helpful in this case. 

Consider now three-layer preforms. An example of the direct problem corresponding 
to yo  = 0.2, y = 2, pJp2 = 0.2 and = 0 is shown in figure 6. The calculated final 
shape of the cladding (curve l’), corresponding to the initial polishing of the outer 
matrix, is close to that of an ellipse. The effect of the solid core size on the final shape 
of the cladding is illustrated in table 2. There we show the second Fourier coefficient 
of the cladding boundary bZlf( = b,, at t = 00) as a function of yo. (This coefficient is 
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FIGURE 7. The time evolution of the collapse process at various scaled times for the surface tension 
ratios a0 = 1, a1 = 0 and the viscosity ratio pl = 1 (curves 1 : deposited region, 2: substrate tube). (a) 
f =  0 (the initial shapes of the boundaries; (b)  f =  0.3; (c) t= 0.5; (d) i=  0.7; (e)  t= 0.75; cf> 
t = 0.827 (the final state). 
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FIGURE 8. The final states of the collapse for various surface tension ratios a,; E,, = 1, pl = 1, the 
initial geometry is the same as in figure 7(a)  (curves 1: deposited region, 2: substrate tube). (a) 
a = 0.1; (b)  a, = 1. 

related to the ellipticity.) The coefficient b,,,( < 0) is the one that determines the 
birefringence of the fibre (Yarin 1990; Bernat & Yarin 1992) and its value (as well as 
the birefringence) decreases as the core radius increases. 

4.2. Method of surface-tension-driven collapse 
The non-symmetrical modified chemical vapour deposition (N-MCVD) process, with 
the subsequent surface-tension-driven collapse, makes it possible to fabricate preforms 
with bow-tie shaped claddings (see the photograph in figure 6 in Doupovec & Yarin 
1991). In this case the boundaries 4 and 4 in figure 2 may be taken approximately as 
circles, and the interface & as an ellipse with a semi-axes ratio 6 = CJC, satisfying the 
inequality 

(4.8) 
(see (3.94 e)). Here we suppose that the radius of the unperturbed circle corresponding 
to the boundary & is equal to Roo = (el c,)liZ, which means that the area of this circle 
is equal to that of the ellipse. 

The initial perturbations of the boundaries corresponding to (3.4) are given by 

1 d 6 d (Yl /Y*)2 

Q = - 1 + (6sin2p,+ 6-' c ~ s ~ p , ) - ~ / ~ ,  Cl = c2 = 0. (4.9 a, b) 
Expression ( 4 . 9 ~ )  describes an elliptical perturbation of the circle of radius Roo. 
In the calculations we take the following values of the geometrical parameters: 

y1 = 1.457,y, = 1.440, S = (y1/y*)' = 1.023, (4.lOa-c) 

which means that the elliptical boundary 4 at the major axis practically touches 4 (see 
figure 7a). 

The time evolution of the surface-tension-driven collapse process is shown in figure 
7. The resulting bow-tie-like shape (figure 7f) is in qualitative agreement with the one 
found experimentally (figure 6 in Doupovec & Yarin 1991). Unfortunately, in this 
experiment the exact parameters of the deposited layer are unknown, which does not 
allow us to make a quantitative check of the theory in this case. 

The final shapes of the surface-tension-driven collapse for the same initial condition 
as in figure 7 but for different values of El and ,El are shown in figures 8 and 9, 
respectively. Variation in ti1, as well as in ,a1, does not change the fact that a bow-tie- 
like shape of the cladding appears, as is seen in figures 8 and 9. 
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FIGURE 9. The final states of the collapse for various viscosity ratios pl; tio = 1, El = 0, the initial 
geometry is the same as in figure 7(a)  (curves 1: deposited region, 2 :  substrate tube). (a)  p1 = 0.1; 
(b) p, = 10. 

5. Conclusion 
We obtained the analytical solutions for two hydrodynamic problems related to 

formation of preforms for drawing of polarization-maintaining optical fibres. In both 
cases (the polishing method and the collapse method) formation of the desired internal 
structure of the preform proceeds under the action of the surface tension of softened 
glass. Both cases are described by the inertialess Stokes equations. The boundaries are 
considered as perturbations of the appropriate circles and the boundary conditions are 
linearized. 

The solutions obtained allow us to predict the final shape of the cladding boundary 
for a given initial shape of the outer matrix (in the polishing method) or coating (for 
the collapse method). These represent the solution of the direct problem. The analytical 
result allows us also to solve the inverse problem and predict the initial shape of the 
outer matrix needed to arrive at a given shape of the cladding. The results thus 
obtained agree fairly well with the experimental data. 

In Yarin (1990) the linearized analytical solution of the thermoelastic problem 
corresponding to a hard polarization-maintaining preform (or fibre) was found. In 
Bernat & Yarin (1992) the corresponding numerical large-deformation solution was 
obtained. Therefore, the field of thermoelastic stresses, as well as the birefringence 
(related to the stress by the stress-optical law), can be readily calculated analytically if 
the shape of the cladding boundary is known. The present work yields such 
information and thus, combined with the above thermoelastic solutions, makes it 
possible to predict analytically the birefringence resulting from initial polishing of the 
outer matrix, as well as from the shape of the deposited coating in the method of 
collapse. 

The following conclusions might provide some guidance for the designer of 
polarization-maintaining optical fibres. 

(i) A bow-tie-like form of the cladding boundary may be achieved by simple straight 
polishing of the outer matrix at a relatively large value of y = 4 (figures 4d and 4e). 

(ii) Simple straight polishing of the outer matrix yields higher ellipticity of the 
cladding compared to that which may be achieved at even deeper narrow wedge 
polishing (cf. figures 4b  and 4k). 

(iii) The results of solution of the inverse problem indicate that bow-tie features of 
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the cladding boundary can be strengthened by a small perturbation of simple straight 
polishing (figure 5). 

(iv) The duration of the collapse (or heat treatment in the polishing method) needed 
to achieve the most deformed cladding form in the case of small non-zero interfacial 
tension (a,/a, - 0.1) is of the order of ,uz R,,/a,. 

(v) Glass pairs with relatively high interfacial tension are completely inappropriate 
for use in the polishing method. They are also less effective in the collapse method. 

The author acknowledges fruitful discussions with J. Doupovec, V. M. Entov and 
Yu. K. Chamorovskii as well as the help of V. Bernat in graphical representation of the 
collapse patterns. The author is a recipient of the Guastalla Fellowship established by 
Fondation Rashi, the Planning and Grants Committee of the Council of Higher 
Education, Israel Academy of Sciences and Humanities. He is also indebted to the 
Institute of Physics, Slovak Academy of Sciences in Bratislava, for their hospitality 
in 1989 and 1990. 
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In addition, 

Appendix B 

x[2p1( -$+$$)+2( - A + $ ) ] } / [ p l ( g - $ ) + ( E - $ ) ] ,  1 y2 
(B la )  

@ -Y* R 0 @ 1 1  y2 y-2R1 * - @, Ro p1 - 1 
Y1 Rl Yf F A ' 

2 -  

z, = +y,@3, 2 2  = - y -  3+y; +2y-1+2y3 (B 1 h, i) 
3+y: 3y-2+y2 

pl( 1 - y:) - - y* + y-2 Pl(1 - Y 3  -Y2+Y-27 

2Yo dR0 +yo  G2 +- - Q3, 
R, df 

( l n y o - l ) ( ~ l - l )  - 2(3y-'+y2) 
1u1 -y2+y-2 

+ 

(B 10) 
2 dR, lny, dR,p,-1 2y dR 2 dR 

R, df R, df 
+ y  @ +d--o@ -_>. z,=-- +--- 

0 2  plR1 d t  R, dt p1 
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1 4 dRl 4p1dR 2 dRl 
R, R, d t  R, df R, dt 

s = a , y - ( 1 - - n 2 ) + - - - - T + - - = - ~ S 3 ,  

n + l  
2n 

( - n -  l)yt+2(-n+ l)+yt--(-2n+4-2n2) 
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(ny2-3n - ny-n - ny4-n + nya+z)]}, (C 2 i) 

,, - ,~ , ( l -n~) (y , " - y , "+~) ,  Sl; = S" -2, (C 2j-1) S' = s  -1 S" - - 2 dR 
l1 'R, d t  ' "R,, d t  

2 dR 

2 dR, 
S ; ,  = Sl2F=, S,, = (n+2)+ny;"+', s,, = n-y;"-'(-n+2), ( ~ 2 n - p )  

S' =-- -n+l  yon+'+ ( - n  + 2)---$, n+l  
2 2n 16 

n2-n-1 1 dR,, a0y1 +- 
4p, Ro' 

-- s -  '* - n(n' - 1 )  Ro df 

Note that G,(y), S3, S,, S,, Slo, S,,, s13 are given by (A 1c ,L  g ,  1, m, o,P) ,  
respectively. 
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